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Abstract
In this paper we consider an energy operator (a free Hamiltonian), in the second-
quantized approach, for the multiparameter quon algebras: aia

†
j − qija

†
j ai =

δij , i, j ∈ I with (qij )i,j∈I any Hermitian matrix of deformation parameters.
We obtain an elegant formula for normally ordered (sometimes called Wick-
ordered) series expansions of number operators (which determine a free
Hamiltonian). As a main result (see theorem 1) we prove that the number
operators are given, with respect to a basis formed by ‘generalized Lie
elements’, by certain normally ordered quadratic expressions with coefficients
given precisely by the entries of the inverses of Gram matrices of multiparticle
weight spaces. (This settles a conjecture by Meljanac S and Perica A (1994
J. Phys. A: Math. Gen. 27 4737–44).) These Gram matrices are Hermitian
generalizations of the Varchenko matrices, associated with a quantum
(symmetric) bilinear form of diagonal arrangements of hyperplanes. The
solution of the inversion problem of such matrices in Meljanac S and Svrtan D
(1996 Math. Commun. 1 1–24 (theorem 2.2.17)), leads to an effective formula
for the number operators studied in this paper. The one-parameter case, in the
monomial basis, was studied by Zagier, Stanciu and Møller.

PACS numbers: 03.65.−w, 05.30.−d, 02.20.Uw

1. Introduction

One-parameter quonic intermediate statistics [2–4], which interpolate between Bose–Einstein
and Fermi–Dirac statistics, are examples of infinite statistics in which any representation of the
symmetric group can occur. These models offer a possibility of a small violation of the Pauli
exclusion principle, at least in nonrelativistic theory [3, 5]. In a seminal paper [15], Zagier
made an explicit computation of the Gram determinants of multiparticle weight spaces of the
Fock representation (which for q ∈ 〈−1, 1〉 proves a Hilbert space realizability of ‘q-mutator
relations’ aia

†
j − qa

†
jai = δij , i, j ∈ I ) and began a study of particle number operators.

0305-4470/03/236337+13$30.00 © 2003 IOP Publishing Ltd Printed in the UK 6337
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A slight variation of the Zagier conjecture [15] on the form of a normally ordered series
expansion of the number operators in a monomial basis was proved subsequently by Stanciu
in [11]. Generally, physical observables in the second-quantized approach are represented
in terms of creation and annihilation operators in the normally ordered form (see Møller
[6]). Meljanac and Perica started (in [7, 8]) with an idea to extend the above results to the
multiparameter case: aia

†
j − qija

†
j ai = δij , i, j ∈ I , where each commutation relation has its

own deformation parameter qij (a complex number) satisfying qji = (qij )
∗ (where ‘∗’ denotes

complex conjugation).
Subsequently, in [9] (see also [10]) two types of results are proved:

Ad.1. In the case of distinct quantum numbers the multiparameter Gram determinants
(theorem 1.9.2) are computed by extending Zagier’s method, which in turn also gives a
Hermitian analogue of the Varchenko determinant of the (symmetric) quantum bilinear form
of diagonal arrangements of hyperplanes. From this explicit computation a Hilbert space
realizability follows in the case when all |qij | < 1 (cf other methods presented in [16, 17]).

Ad.2. Explicit formulae (theorem 2.2.17) are obtained for the inverse of the Gram matrices of
arbitrary multiparticle weight spaces, by following the ideas of Božejko and Speicher (given
in [16]). In particular, a counterexample (when n = 8) to a conjecture of Zagier (also stated
in [15]), for the form of the inverse in the one-parameter case, is found. In [9] an appropriate
extension of Zagier’s conjecture for the form of the inverse of multiparameter Gram matrices
is also formulated and proved.

In this paper, we study number operators (and hence energy operator) in the spirit of
the second-quantized approach. The approach is basically algebraic, i.e. independent of any
particular representation (see [3, 6, 8, 11]).

The main result of this paper is theorem 1, in which we show that the coefficients of the
normally ordered series expansion of particle number operators in the Fock representation, in
terms of a basis of ‘generalized Lie elements’, are given precisely by certain inverse matrix
entries of the Gram matrices on the multiparticle weight spaces. This confirms a conjecture of
Meljanac and Perica in [8]. Thus, in conjunction with the results of [9], one obtains explicit
expressions for the number operators in multiparameter quon algebras.

2. Multiparameter quon algebras and Gram matrices

Let q = {qij : i, j ∈ I, (qij )
∗ = qji} be a Hermitian family of complex numbers (parameters),

where I is a finite (or infinite) set of indices. Recall that (cf [9]) by a multiparameter quon
algebra A = A(q) we mean an associative (complex) algebra generated by

{
ai, a

†
i , i ∈ I

}
subject to the following qij -canonical commutation relations:

aia
†
j = qija

†
j ai + δij ∀i, j ∈ I.

The algebra A has a canonical anti-involution ‘†’: A → A (which exchanges ai with a
†
i ,

reverses products and on the coefficients acts by complex conjugation).
Recall that a Fock representation of A is given by a family of linear operators ai : H → H

on a complex Hilbert space H, i ∈ I , satisfying the following canonical commutation (or ‘qij -
mutator’) relations,

aia
†
j − qija

†
j ai = δij i, j ∈ I (1)

ai|0〉 = 0 i ∈ I (2)

where a
†
i denotes the adjoint of ai , and |0〉 denotes a distinguished (‘vacuum’) vector in H.
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Any total order on the indexing set I induces a total order on the set I ∗ of all sequences
(=words) i = i1 · · · in over I. Then we can consider the Gram matrix

A = (〈i|j〉) (3)

of all n-particle states |i〉 := a
†
i1
a
†
i2

· · · a†
in
|0〉 (ij ∈ I, n � 0). Its entries 〈i|j〉 are the ‘expectation

values’ (i.e. overlaps of n-particle states in the second quantized Fock description)

〈0|ain · · · ai1a
†
j1

· · · a†
jm

|0〉.
These entries vanish, unless (i) n = m and (ii) i1 · · · in and j1 · · · jm are permutations of the
same weakly increasing sequences ν = k1 . . . kn, k1 � · · · � kn, kj ∈ I , which we shall call
weights. Thus the matrix A is block diagonal (cf [9, proposition 1.6.1]):

A = ⊕n�0 ⊕k1�···�kn
Ak1...kn (4)

with blocks Aν = Ak1...kn indexed by weights. The size of Aν is equal to the number of
permutations (or rearrangements) of the multiset {k1 � · · · � kn}.

For ν = k1 < k2 < · · · < kn (a generic weight), Aν is a matrix of order n! with
rows/columns labelled by rearrangements (of ν) i = i1 · · · in = kπ(1) . . . kπ(n) =: ν · π (π ∈
Sn = the nth symmetric group) or simply by permutations π ∈ Sn. The entry of Aν in the row
i = ν · π and column j = ν · σ is then given explicitly by the following formula,

Aν
i,j = Aν(π, σ ) =

∏
(r,s)∈I (σ−1π)

qkπ(r)kπ(s)
(5)

where, for π ∈ Sn, I (π) denotes the set of inversions of π : I (π) = {(r, s) : 1 � r < s �
n, π(r) > π(s)}. Thus, we can view Aν as a linear operator on the group algebra C[Sn] =
{∑π∈Sn

cππ : cπ ∈ C, π ∈ Sn}.
For general weights ν̃ = (

k̃1 = · · · = k̃n1 < k̃n1+1 = · · · = k̃n1+n2 < · · · < k̃n1+···+np−1+1 =
· · · = k̃n

)
, n1 + n2 + · · · + np = n, the matrix Aν̃ has order equal to n!/n1! · · · np! and

its rows/columns are labelled by rearrangements i = i1 · · · in = ν̃ · π̃ , π̃ ∈ Hν̃\Sn, where
Hν̃ = Stabν̃ = {σ ∈ Sn|ν̃ · σ = ν̃} is the (stabilizer) subgroup fixing ν̃. The (i, j)th entry of
Aν̃ , i = ν̃ · π̃ , j = ν̃ · σ̃ , π̃ = Hπ , σ̃ = Hσ , where π, σ are unique coset representatives
(of minimal length) of π̃ , σ̃ , is given by

Aν̃
i,j = Aν̃(π̃, σ̃ ) =

∑
τ∈σ̃−1π̃=σ−1Hπ

∏
(r,s)∈I (τ)

qir is =
∑

τ∈σ−1Hπ

∏
(r,s)∈I (τ)

qkπ(r)kπ(s)
. ˜(5)

(Note that (5̃) generalizes (5), because Stabν = Hν = {1}, if ν is generic.) In [9,
subsection 1.7] it is shown that the operator Aν̃ can be obtained from Aν(ν = k1 < · · · < kn)

by a reduction procedure in two steps: first by identifying indices k1 �→ k̃1, . . . , kn �→ k̃n and
then restricting this specialized operator Aν |ν �→ν̃ to the invariant subspace (in C[Sn]) spanned
by Hν̃-invariant vectors σ = ∑

h∈Hν̃
hσ ∈ C[Sn]. In fact (5̃) can be rewritten as

Aν̃(π̃, σ̃ ) =
∑
h∈Hν̃

Aν(π, hσ)|ν �→ν̃ . (6)

As a consequence we obtain the following: if Aν|ν �→ν̃ is invertible, then the matrix Aν̃ is
invertible too, and a relation analogous to (6) holds for the inverses. In particular, detAν̃

divides detAν |ν �→ν̃ . This shows that in order to study some properties (e.g. invertibility or
positive definiteness) it suffices to consider the generic case (when all the indices ki are
distinct).

Now we list some properties of the matrices Aν, ν = k1 < k2 · · · < kn:

(a) Aν(π, π) = 1 (7)
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(b) Aν(σ, π) = Aν(π, σ )∗ (Hermiticity) (8)

(c) Let wn = n . . . 21 be the longest permutation in Sn. Then

Aν(πwn, σwn) = Aν(σ, π) = Aν(π, σ )∗. (9)

Property (c) can be rewritten in the matrix form as follows,

WAνW = (Aν)T W 2 = 1 (10)

where

W(π, σ) =
{

1 if πwn = σ

0 otherwise.
(11)

It is important to note that the Fock space, in our case, is positive definite iff the Gram matrix
A is positive definite. Recall that a sufficient condition for the positivity of the norm squared
of all vectors is (cf [9, theorem 1.9.4])

|qij | < 1 ∀i, j ∈ I. (12)

In particular, condition (12) implies that the n-particle states |i〉 = a
†
i1

· · · a†
in
|0〉 (ij ∈ I, n � 0)

are linearly independent.

Examples. For the generic weights ν = 1, 12, 123 the Gram matrices are as follows:

A1 = (1) A12 =
(

1 q12

q21 1

)

A123 =

π�σ 123 132 312 321 231 213
123 1 q23 q13q23 q12q13q23 q12q13 q12

132 q32 1 q13 q12q13 q12q13q32 q12q32

312 q31q32 q31 1 q12 q12q32 q12q31q32

321 q21q31q32 q21q31 q21 1 q32 q31q32

231 q21q31 q21q31q23 q21q23 q23 1 q31

213 q21 q21q23 q21q13q23 q13q23 q13 1

(Here we use the Johnson–Trotter ordering of permutations: 123, 132, 312, 321, 231, 213.)
For the non-generic: ν̃ = 11, 113, the Gram matrices are

A11 = (1 + q11) A113 =
π�σ 113 131 311
113 1 + q11 q13 + q11q13 q2

13 + q11q
2
13

131 q31 + q11q31 1 + q11q13q31 q13 + q11q13

311 q2
31 + q11q

2
31 q31 + q11q31 1 + q11

The inverses of the Gram matrices in the generic case above are given by

[A12]−1 = 1

�12

(
1 −q12

−q21 1

)
= 1

�12

(
1 q12

q21 1

)
∗

(
1 −1

−1 1

)
where �12 := 1 − q12q21 = 1 − |q12|2, and

[A123]−1 = 1

�123
A123 ∗ M123.
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Here �123 := (1 −|q12|2)(1 −|q13|2)(1 −|q23|2)(1 −|q12|2|q13|2|q23|2), ‘∗’ denotes the Schur
product of matrices (aij ) ∗ (bij ) := (aijbij ) and M123 stands for the following matrix,

π�σ 123 132 312 321 231 213

123 (1−ac)(1−b) (b−1)(1−c) c(b−1)(1−a) (1−ac)(1−b) a(b−1)(1−c) (b−1)(1−a)

132 (c−1)(1−b) (1−ab)(1−c) (c−1)(1−a) a(c−1)(1−b) (1−ab)(1−c) b(c−1)(1−a)

312 (a−1)(1−b) (a−1)(1−c) (1−bc)(1−a) (a−1)(1−b) b(a−1)(1−c) (1−bc)(1−a)

321 (1−ac)(1−b) a(b−1)(1−c) (b−1)(1−a) (1−ac)(1−b) (b−1)(1−c) c(b−1)(1−a)

231 a(c−1)(1−b) (1−ab)(1−c) b(c−1)(1−a) (c−1)(1−b) (1−ab)(1−c) (c−1)(1−a)

213 (a−1)(1−b) b(a−1)(1−c) (1−bc)(1−a) c(a−1)(1−b) (a−1)(1−c) (1−bc)(1−a)

(with a := |q23|2, b := |q13|2, c := |q12|2).
The inverse in the non-generic case ν = 113 is given by

[A113]−1 = 1

�113

 1 −(1 + q11)q13 q11q
2
13

−q31(1 + q11) (1 + q11)(1 + q13q31) −(1 + q11)q13

q2
31q11 −q31(1 + q11) 1


where �113 = (1 + q11)(1 − q13q31)(1 − q11q13q31) = (1 + q11)(1 − |q13|2)(1 − q11|q13|2).

3. Series expansions of number operators

First we recall that the kth particle number operator Nk (k ∈ I) (in the Fock representation
satisfying the positivity condition (12)) is a diagonal operator which counts the number of
appearances of the creation operator a

†
k in any multiparticle state |i〉. These operators satisfy

the following implicit conditions (equations):

[Nk, al] = −akδkl ∀k, l ∈ I

Nk|0〉 = 0 ∀k ∈ I.
(13)

Note that for any fixed k ∈ I , if we assume (12), equations (13) have a unique solution for
Nk. The number operators play an important role in constructing the free Hamiltonian (=the
energy operator) of the free system (for which the energy is additive, cf [3]) of generalized
quon particles in the nonrelativistic limit:

H =
∑
k∈I

EkNk. (14)

More generally, our primary goal here is to express Nk in terms of quon algebra generators
as a normally ordered infinite series involving certain iterated deformed commutators of the
creation and annihilation operators.

It is already indicated in [8] that the formal expansion of the number operator Nk in
terms of normally ordered products is necessarily of the following form which preserves each
n-particle subspace (it easily follows from (3)),

Nk =
∑

i∈I+,i1=k

X†
i Yi (15)

where I+ denotes the set of all nonempty words (or sequences) i = i1 . . . in, n � 1 over the
set I as an alphabet, and the sum is over those words which begin with letter k. Here, if
the indices i1, . . . , in are distinct, we require that Xi and Yi are both multihomogeneous of
the same multidegree, i.e. they are expressible as a linear combination of all rearrangements
aj = ai · π := ai·π (=aiπ(1)

aiπ(2)
· · · aiπ(n)

) of the ‘monomial’ ai = ai1ai2 · · · ain , in the following
form,
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Xi =
∑
π∈Sn

ai·πxi·π,i (16)

Yi =
∑
π∈Sn

ai·πyi·π,i (17)

where xi·π,i and yi·π,i are, as yet unknown, coefficients (depending on qij ) with the following
normalization convention yi,i = 1. For general i, we require that the summations in (16)
and (17) should be replaced by summations over the left cosets H\Sn, where H = Stabi is
the stabilizer subgroup of Sn fixing i, with coefficients x̃i·π̃,i, ỹi·π̃ ,i, π̃ ∈ H\Sn equal to the
following orbit sums:

x̃i·π̃,i =
∑
h∈H

xi·hπ,i

(18)
ỹi·π̃,i =

∑
h∈H

yi·hπ,i.

Now we start finding the solution of the system (13), in the form (15), as follows: we first
use the fact that under condition (12), the set of all monomials a

†
in

· · · a†
i1
aj1 · · · ajm

(ik, jl ∈ I)

is linearly independent. Then, we plug the right-hand side of (15) into the system (13).
By resolving it successively in degree 1, then in degree 2, etc, we obtain the following
(noncommutative) recursions for Yi:

Recursions for Y

Yi1i2···in = Yi1···in−1ain − qini1qini2 · · · qinin−1ainYi1···in−1 (19)

and similarly, a system of ‘twisted’ partial differential equations for Xi,

Equations for X

l∂
(
Xi1···in

)† = (
Xi1···in−1

)†
δlin (l ∈ {i1, . . . , in}) (20)

where l∂ denotes the left twisted derivative,

l∂
(
a
†
j1

· · · a†
jn

) =
∑

(p:jp=l)

qlj1 · · · qljp−1a
†
j1

· · · â†
jp

· · · a†
jn

(21)

(̂ denotes the omission of the corresponding creation operator).

Proposition 1. The Y-components (17) of the solution (15) of equation (13) are given by the
following iterated q-commutator (‘generalized Lie elements’) formula,

Yi1 = ai1
(22)

Yi1i2...in = [ · · · [[ai1, ai2

]
qi2 i1

, ai3

]
qi3 i1 qi3 i2

, . . . , ain

]
qini1 qini2 ···qinin−1

where [x, y]q = xy − qyx denotes the q-commutator of x and y. (For Nk we need to set
i1 = k.)

Proof. By iterating (19). �

In order to express the formula (22) (and some others later) in the operator form we shall now
introduce a twisted group algebra of the permutation group.
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4. A twisted group algebra action

Let us consider the following.
(1) A right action of the symmetric group Sn, by permuting factors of any degree n

monomial in the annihilation operators:

ai · π = (
ai1ai2 · · · ain

) · π := aiπ(1)
aiπ(2)

· · · aiπ(n)
(23)

(2) A ‘diagonal’ action of the formal power series ring Kn = C[[Qk,l, 1 � k, l � n]]
(where Qk,l are commuting indeterminates) defined by

ai · Qk,l

(=(
ai1ai2 · · · ain

) · Qk,l

)
:= qikil ai1ai2 · · · ain . (24)

(Here qij are complex numbers from the canonical commutation relations (1)!) These two
actions give rise to an action of a twisted group algebra:

Kn = Kn˜[Sn] (25)

of Sn (with coefficients in Kn). The multiplication in the algebra Kn is defined by imposing
the following commutation relations (‘an action of Sn on the coefficient ring Kn’)

πQk,l = Qπ(k)π(l)π. (26)

It is clear that, by specializing Qk,l = q (1 � k, l � n), the twisted group algebra Kn˜[Sn] is
mapped onto the ordinary group algebra C[[q]][Sn] in which, according to Zagier [15], live
certain important elements: αn, βn, γn, δn satisfying

αn = αn−1βn, βn = δnγn
−1

(⇒αn = β2 · · · βn = δ2γ
−1
2 δ3γ

−1
3 · · · γ −1

n−1δnγ
−1
n

)
. (27)

(Note that our notation for δn is shifted by 1 compared with [15], which seems to be more
natural!)

These elements, via the regular representation Rn, were crucial in Zagier’s computation
of the determinant and the inverse of the one-parameter matrices An = An(q) = Rn(αn).

We shall now define a ‘lifting’ to Kn˜[Sn] of the Zagier elements by first defining, for each
permutation π ∈ Sn, an element π̃ ∈ Kn˜[Sn], (π ∈ Sn), which encodes all inversions of π :

π̃ := Qππ where Qπ :=
∏

1�k<l�n,π(k)>π(l)

Qπ(k),π(l) (28)

with the multiplication rule

σ̃ π̃ =
 ∏

(a,b)∈I (σ )∩I (π−1)

Qσ(a),σ (b)Qσ(b),σ (a)

 σ̃π.

(Observe that π̃ generalizes qi(π)π, i(π) := the number of inversions of π .)
Then we define a ‘lifting’ of all Zagier’s elements by the following formulae:

α̃n :=
∑
π∈Sn

π̃ (29)

β̃n :=
n∑

k=1

t̃ k,n (30)

γ̃n := (1 − t̃1,n)(1 − t̃2,n) · · · (1 − t̃ n−1,n) (31)

δ̃n := (1 − t̃ n−1 t̃1,n)(1 − t̃ n−1 t̃2,n) · · · (1 − t̃ n−1 t̃ n−1,n). (32)
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Similarly we define

α̃n1,n2,...,nk
:=

∑
π∈Sn1×Sn2 ×···×Snk

π̃ . (29a)

(Here tk,l denotes the cycle

(
k k + 1 · · · l

l k · · · l − 1

)
∈ Sn and tk := tk,k+1.)

It is easy to check that the following relations, analogous to (27), hold true:

α̃n = α̃n−1β̃n, β̃n = δ̃nγ̃
−1
n

(⇒α̃n = β̃2 · · · β̃n = δ̃2γ̃
−1
2 δ̃3γ̃

−1
3 · · · γ̃ −1

n−1δ̃nγ̃n
−1

)
. (33)

Important note. Now we can realize all Gram matrices Aν from (4) as the matrices of the
right multiplication by the lifted Zagier element α̃n on the space of monomials ai of weight ν.
This explains why we needed to introduce a twisted group algebra in the multiparameter case.

In what follows, we shall also need the following notation:

Q{π} :=
∏

1�k<l�n,π(k)>π(l)

Qπ(k),π(l)Qπ(l),π(k) (for any π ∈ Sn) (34)

QT :=
∏

k �=l∈T

Qk,l (for any set T ⊆ {1, 2, . . . , n}) (35)

together with the following lemma which we shall use in the proof of the main result:

Lemma 1. We have the following identity in Kn:

α̃n−1,1(1 − t̃ n−1 t̃1,n) = ξnα̃1,n−2,1 (36)

where ξn := ∑n−1
k=1(1 − Q{k,k+1} · · · Q{k,n})t̃1,k .

(Recall from (29a) that α̃n−1,1 = ∑
π∈Sn−1×S1

π̃ , α̃1,n−2,1 = ∑
π∈S1×Sn−2×S1

π̃ .)

Proof. By definition α̃n−1,1 = ∑
π∈Sn−1×S1

π̃ . By using a factorization π = t1,kσ , where

π(1) = k, σ ∈ S1 × Sn−2 × S1, we get α̃n−1,1 = (∑n−1
k=1 t̃1,k

)
α̃1,n−2,1 (here we used that

π̃ = t̃1,k σ̃ , cf (28)). Similarly,

α̃n−1,1 t̃ n−1 t̃1,n =
∑

π∈Sn−1×S1

π̃ t̃n−1 t̃1,n =
∑

π∈Sn−1×S1

π̃Q{n−1,n} t̃1,n−1 (by (28))

=
∑

π∈Sn−1×S1

Q{π(n−1),π(n)}π̃ t̃1,n−1

=
∑

π∈Sn−1×S1

Q{π(n−1),n}Q{t−1
π(n−1),n−1}π̃ t1,n−1 (by (28) and (34))

=
∑

σ∈S1×Sn−2×S1

Q{t−1
π(n−1),n} t̃1,π(n−1)σ̃ [t1,π(n−1)σ = πt1,n−1]

=
(

n−1∑
k=1

Q{t−1
k,n} t̃1,k

)
α̃1,n−2,1.

By subtracting the last two formulae, the lemma follows. �

Now we state the formula (22) in the operator form:
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Corollary 1. We have

(i) Yi1···in = (ai1ai2 · · · ain) · γn, where γn := (1 − t̃1,2)(1 − t̃1,3) · · · (1 − t̃1,n) ∈ Kn.

(ii) ai1ai2 · · · ain = Yi1···in · γn
−1, with

γn
−1 =

∑
π∈Sn

π̃ ·
∏

π(i)>π(i+1)

Q{1,...,i}/(1 − Q{1,2}) · · · (1 − Q{1,...,n}).

(iii) The set {Yi·π̃ |π̃ ∈ H\Sn} (H = Stabi) is a linearly independent set if |qir is | < 1, 1 � r �=
s � n.

Proof. (i) Formula (22) can be rewritten as

Yi1i2···in = ai1ai2 · · · ain

(
1 − qi2i1 t1,2

)(
1 − qi3i1qi3i2 t1,3

) · · · (1 − qini1qini2 · · · qinin−1 t1,n

)
.

By using t̃1,l = Ql,1 · · · Ql,l−1t1,l = t1,lQ1,2Q1,3 · · · Q1,l the claim (i) follows. (ii) The proof
of (ii) is similar to that of proposition 2.1.1 in [10]. (iii) Follows from (ii). �

Proposition 2. The Yi satisfy the following (twisted) differential equations:

(i) l∂
(
Yi1···in

)† =
∑

(j�2:ij =l)

d
(j)

i1···in
(
Yi1···îj ···in

)†
(n � 2)

(37)
(ii) l∂Y

†
i1

= δi1l (n = 1)

where l∂ is defined in (21), and where

d
(j)

i1···in := qij ij+1 · · · qij in

(
1 − ∣∣qij i1 · · · qij ij−1

∣∣2)
. (38)

Proof. By induction. For n = 2 we have Yi1i2 = [
ai1, ai2

]
qi2i1

= ai1ai2 − qi2i1ai2ai1 which

implies
(
Yi1i2

)† = a
†
i2
a
†
i1

− qi1i2a
†
i1
a
†
i2

(here we use (qij )
∗ = qji). Hence

l∂
(
Yi1i2

)† = δli2a
†
i1

+ δli1qli2a
†
i2

− qi1i2

(
δli1a

†
i2

+ δli2qli1a
†
i1

)
= (

1 − qi1i2qi2i1

)
a
†
i1
δli2 = d

(2)

i1i2
Y

†
i1
δli2 .

Now we suppose that (25 ) holds true for n − 1. Then, from (19) it follows that

l∂
(
Yi1···in

)† = l∂
[
a
†
in

(
Yi1···in−1

)† − qi1in · · · qin−1in

(
Yi1···in−1

)†
a
†
in

]
= δlin

(
Yi1···in−1

)†
+ qlina

†
in l∂

(
Yi1···in−1

)†
−qi1in · · · qin−1in

[
l∂

(
Yi1···in−1

)†
a
†
in

+ qini1 · · · qinin−1δlin

(
Yi1···in−1

)†]
= δlin

(
1 − ∣∣qi1i2 · · · qin−1in

∣∣2)(
Yi1···in−1

)†
+

n−1∑
j=2;ij =l

qlind
(j)

i1···in−1

[
a
†
in

(
Yi1···îj ···in−1

)† − qi1in · · · q̂lin · · · qin−1in

(
Yi1···̂ij ···in−1

)†
a
†
in

]
= δlind

(n)

i1···in
(
Yi1···in−1

)†
+

n−1∑
j=2;ij =l

d
(j)

i1···in
(
Yi1···̂ij ···in

)† =
∑

n�j�2;ij=l

d
(j)

i1···in
(
Yi1···̂ij ···in

)†
.

This completes the proof of proposition 2. �
Now we proceed with solving (20) to get Xi-components of our number operator Nk .

There are two approaches.
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The first approach, developed in [8], is based on an observation that in (37) the index i1

survives in all terms of the rhs. So, we could look for Xi in the form of a linear combination
of such Yi with the first index fixed (= k for Nk).

(Xi)
† =

∑
j=i·π,π∈S1×Sn−1

(Yj)
†cj,i. (39)

By applying the twisted derivative l∂ to (39), the left-hand side gives

l∂(Xi)
† = (

Xi1···in−1

)†
δlin (by (20))

=
∑

σ∈S1×Sn−2

(
Yiσ(1)···iσ(n−1)

)†
ciσ(1)···iσ(n−1) ,i1···in−1δlin (by (39)).

The l∂ applied to the right-hand side of (39) gives∑
π∈S1×Sn−1

l∂(Yi·π )†ci·π,i =
∑

π∈S1×Sn−1

∑
(n�j�2;l=π(j))

d(j)
i·π

(
Yiπ(1)···îπ(j )···iπ(n)

)†
ci·π,i (by (37)).

By linear independence of Yi (cf corollary 1) we obtain the following system of (n − 1)!
equations (in the generic case) for (n−1)! unknown coefficients ci·π,i (i1 = k, π ∈ S1 ×Sn−1):

Equations for cj,i∑
n�j�2

d
(j)
i·πtj,n

ci·πtj,n,i = δπ(n),nc(i·π)′,i′ (40)

where π ∈ S1 ×Sn−1, tj,n denotes the cyclic permutation which sends 1, 2, . . . , j, j +1, . . . , n

to 1, 2, . . . , n, j, . . . , n − 1 and i′ = i1 . . . in−1.
Note that our derivation of the equations (40) (generic case) will yield (by summation)

the equations for the nongeneric case (i.e. when there are repetitions among i1, · · · , in). This
justifies the form of our expression (15) for the number operators Nk .

The second approach to solving the recursive system (20) for Xi is to write Yi in terms of
Xi, again with the first index fixed (= k for Nk).

(Yi)
† =

∑
j=i·π,π∈S1×Sn−1

(Xj)
†ej,i. (41)

Proposition 3. The coefficients ej,i satisfy the following recursions:

ei·π,i = d(r)
i ei′·π ′,i′ (42)

where r = π(n), i′ = i1 . . . in−1, π
′ = tr,nπ(⇒π = t−1

r,n π ′, π ′ ∈ Sn−1), and d
(r)
i = d

(r)
i1···in is

defined in (38).

Proof. By applying l∂ to both sides of (41), and using (37), we obtain∑
j=i·π,π∈S1×Sn−1

(
Xj1...jn−1

)†
ej,iδl,jn

=
∑

r�2,ir=l

d(r)
i

(
Yi1...îr ...in

)†
(43)

=
∑

r�2,ir=l

d(r)
i

∑
σ∈S1×Sn−2

(Xir̂ ·σ )†eir̂ ·σ,ir̂ (44)

where ir̂ := i1 . . . ir−1ir+1 . . . in. Observe that iπ(1) . . . iπ(n−1) = ir̂ · σ iff r = π(n) and
σ = tr,nπ . By equating the coefficients in (43) and (44) the proof of proposition 3
follows. �
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Note that the recursion (42) corresponds to the multiplication by the following element
(of the twisted group algebra):

ηn :=
n∑

k=2

Q{k,k+1} · · · Q{k,n}(1 − Q{k,1} · · ·Q{k,k−1})t̃−1
k,n. (42a)

Let E = (ei,j), with i1 = j1(=k) fixed, be the (n− 1)! × (n− 1)! transition matrix (in the
generic case), with entries ei,j from (41). In [8], the linear equations for the entries of E−1 are
constructed for general n and solved in special cases for n = 1, 2, 3. From these computations it
was conjectured (in [8]) that E−1 is related to the inverse of the Gram matrix A, see equation (3);
here we prove this conjecture.

By comparing ξn from (36) with ηn from (42a) we get

wnηnwn = ξn

and deduce the following:

Lemma 2. The matrix E is the matrix of the right multiplication by the following element of
our twisted group algebra Kn˜[Sn]:

wnα̃n−1,1̃δnwn. (45)

Here wn = n . . . 21 denotes the longest element in Sn.

Proof. It follows by iteratively applying the result of lemma 1, using the definition (32) of δ̃n

together with the recursions obtained in proposition 3. �

5. The main results

Now we prove the following theorem:

Theorem 1. The number operators in the multiparameter quon algebra A(q) equation (1) are
given, in the expanded form, by

Nk = a
†
kak +

∞∑
n=1

∑
i,i1=k

∑
π∈S1×Sn−1

Â−1
i,i·π (Yi·π )†Yi (46)

where the matrix Â denotes the matrix obtained from the Gram matrix A = ⊕n�0 ⊕k1�···�kn

Ak1...kn (described in (4)) by replacing each block Ak1...kn (k1 � · · · � kn) with a specialized
n! × n! block A12···n|1�→k1,2�→k2···n �→kn

and Yi are given by (22).
Or, in the reduced form, by

Nk = a
†
kak +

∞∑
n=1

∑
i,i1=k

∑
π̃∈Stabi\S1×Sn−1

Ã−1
i,i·π̃ (Yi·π̃ )†Yi (47)

where the reduction procedure is given with respect to the groups S1 × Sn−1 (instead of Sn)
analogously to the reduction procedure described in the text preceding (6).

The proof of this theorem relies on one more lemma.

Lemma 3. We have

The S1,n−2,1-component of α̃n
−1 = the S1,n−2,1-component of δ̃−1

n × α̃−1
n−1,1.
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Proof of lemma 3. This is a generalization of a Zagier result [15]. Here we sketch the proof.
By observing that α̃n−1 = α̃n−1,1 we can write (cf (33))

α̃n = α̃n−1,1̃δnγ̃
−1
n α̃−1

n = γ̃ñδ
−1
n α̃−1

n−1,1 (48)

where, according to (31),

γ̃ n = (1 − t̃1,n)(1 − t̃2,n) · · · (1 − t̃n−1,n) =
n∑

k=1

(−1)n−k
∑

π∈Sn,k

π̃−1 (49)

with Sn,k ⊂ Sn denoting the set of all permutations such that π(1) < · · · < π(k) = n >

· · · > π(n). Note that δ̃n involves only permutations belonging to Sn−1 × S1 (cf (32); for an
explicit formula for the inverse of δ̃n see proposition 2.1.1 in [10]). Now it is clear that only
the trivial term in γ̃ n can contribute to the S1,n−2,1-component of α̃−1

n . Lemma 3 is proved.
This establishes the connection between E−1 and the inverse A−1 of the Gram matrices. �

Proof of theorem 1. By using lemmas 2 and 3, together with the symmetry property (9) and
Hermiticity (8) of the multiparameter Zagier matrices, we obtain

X†
i =

∑
π∈S1×Sn−1

Y †
i·πA−1

i,i·π

in expanded form, and similarly

X†
i =

∑
π̃∈H\S1×Sn−1

Y
†
i·π̃A−1

i,i·π̃

in reduced form. This completes the proof of theorem 1. The method for calculating the
inverse of the matrix A is explained in [9, theorem 2.2.17]. �

Corollary. Let us assume an infinite set I of indices, then the number operator Nk restricted
to the finite subset If ⊆ I is obtained from equations (46) and (47) by projecting out all words
with letters from the subset If . In particular if If = {k} we recover the simple formula for Nk

for a single oscillator obtained by Greenberg [2–3].

Also, if we plug into (46) and (47) the formulae (22) expressing Yi in terms of monomials, we
obtain Zagier or Stanciu type formulae for the number operator.

The transition operators will be considered in the near future.
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