The energy operator for a model with a multiparametric infinite statistics

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 366337
(http://iopscience.iop.org/0305-4470/36/23/305)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.103
The article was downloaded on 02/06/2010 at 15:38

Please note that terms and conditions apply.

The energy operator for a model with a multiparametric infinite statistics

Stjepan Meljanac ${ }^{1}$, Ante Perica ${ }^{1}$ and Dragutin Svrtan ${ }^{2}$
${ }^{1}$ Rudjer Bošković Institute - Bijenička c. 54, 10000 Zagreb, Croatia
${ }^{2}$ Department of Mathematics, University of Zagreb, Bijenička c. 30, 10000 Zagreb, Croatia

Received 19 November 2002, in final form 23 April 2003
Published 29 May 2003
Online at stacks.iop.org/JPhysA/36/6337

Abstract

In this paper we consider an energy operator (a free Hamiltonian), in the secondquantized approach, for the multiparameter quon algebras: $a_{i} a_{j}^{\dagger}-q_{i j} a_{j}^{\dagger} a_{i}=$ $\delta_{i j}, i, j \in I$ with $\left(q_{i j}\right)_{i, j \in I}$ any Hermitian matrix of deformation parameters. We obtain an elegant formula for normally ordered (sometimes called Wickordered) series expansions of number operators (which determine a free Hamiltonian). As a main result (see theorem 1) we prove that the number operators are given, with respect to a basis formed by 'generalized Lie elements', by certain normally ordered quadratic expressions with coefficients given precisely by the entries of the inverses of Gram matrices of multiparticle weight spaces. (This settles a conjecture by Meljanac S and Perica A (1994 J. Phys. A: Math. Gen. 27 4737-44).) These Gram matrices are Hermitian generalizations of the Varchenko matrices, associated with a quantum (symmetric) bilinear form of diagonal arrangements of hyperplanes. The solution of the inversion problem of such matrices in Meljanac S and Svrtan D (1996 Math. Commun. 11-24 (theorem 2.2.17)), leads to an effective formula for the number operators studied in this paper. The one-parameter case, in the monomial basis, was studied by Zagier, Stanciu and Møller.

PACS numbers: 03.65.-w, 05.30.-d, 02.20.Uw

1. Introduction

One-parameter quonic intermediate statistics [2-4], which interpolate between Bose-Einstein and Fermi-Dirac statistics, are examples of infinite statistics in which any representation of the symmetric group can occur. These models offer a possibility of a small violation of the Pauli exclusion principle, at least in nonrelativistic theory [3, 5]. In a seminal paper [15], Zagier made an explicit computation of the Gram determinants of multiparticle weight spaces of the Fock representation (which for $q \in\langle-1,1\rangle$ proves a Hilbert space realizability of ' q-mutator relations' $a_{i} a_{j}^{\dagger}-q a_{j}^{\dagger} a_{i}=\delta_{i j}, i, j \in I$) and began a study of particle number operators.

A slight variation of the Zagier conjecture [15] on the form of a normally ordered series expansion of the number operators in a monomial basis was proved subsequently by Stanciu in [11]. Generally, physical observables in the second-quantized approach are represented in terms of creation and annihilation operators in the normally ordered form (see Møller [6]). Meljanac and Perica started (in [7, 8]) with an idea to extend the above results to the multiparameter case: $a_{i} a_{j}^{\dagger}-q_{i j} a_{j}^{\dagger} a_{i}=\delta_{i j}, i, j \in I$, where each commutation relation has its own deformation parameter $q_{i j}$ (a complex number) satisfying $q_{j i}=\left(q_{i j}\right)^{*}$ (where ' $*$ ' denotes complex conjugation).

Subsequently, in [9] (see also [10]) two types of results are proved:
Ad.1. In the case of distinct quantum numbers the multiparameter Gram determinants (theorem 1.9.2) are computed by extending Zagier's method, which in turn also gives a Hermitian analogue of the Varchenko determinant of the (symmetric) quantum bilinear form of diagonal arrangements of hyperplanes. From this explicit computation a Hilbert space realizability follows in the case when all $\left|q_{i j}\right|<1$ (cf other methods presented in [16, 17]).

Ad.2. Explicit formulae (theorem 2.2.17) are obtained for the inverse of the Gram matrices of arbitrary multiparticle weight spaces, by following the ideas of Božejko and Speicher (given in [16]). In particular, a counterexample (when $n=8$) to a conjecture of Zagier (also stated in [15]), for the form of the inverse in the one-parameter case, is found. In [9] an appropriate extension of Zagier's conjecture for the form of the inverse of multiparameter Gram matrices is also formulated and proved.

In this paper, we study number operators (and hence energy operator) in the spirit of the second-quantized approach. The approach is basically algebraic, i.e. independent of any particular representation (see $[3,6,8,11]$).

The main result of this paper is theorem 1, in which we show that the coefficients of the normally ordered series expansion of particle number operators in the Fock representation, in terms of a basis of 'generalized Lie elements', are given precisely by certain inverse matrix entries of the Gram matrices on the multiparticle weight spaces. This confirms a conjecture of Meljanac and Perica in [8]. Thus, in conjunction with the results of [9], one obtains explicit expressions for the number operators in multiparameter quon algebras.

2. Multiparameter quon algebras and Gram matrices

Let $\mathbf{q}=\left\{q_{i j}: i, j \in I,\left(q_{i j}\right)^{*}=q_{j i}\right\}$ be a Hermitian family of complex numbers (parameters), where I is a finite (or infinite) set of indices. Recall that (cf [9]) by a multiparameter quon algebra $\mathcal{A}=\mathcal{A}^{(\mathbf{q})}$ we mean an associative (complex) algebra generated by $\left\{a_{i}, a_{i}^{\dagger}, i \in I\right\}$ subject to the following $q_{i j}$-canonical commutation relations:

$$
a_{i} a_{j}^{\dagger}=q_{i j} a_{j}^{\dagger} a_{i}+\delta_{i j} \quad \forall i, j \in I
$$

The algebra \mathcal{A} has a canonical anti-involution ' \dagger ': $\mathcal{A} \rightarrow \mathcal{A}$ (which exchanges a_{i} with a_{i}^{\dagger}, reverses products and on the coefficients acts by complex conjugation).

Recall that a Fock representation of \mathcal{A} is given by a family of linear operators $a_{i}: \mathcal{H} \rightarrow \mathcal{H}$ on a complex Hilbert space $\mathcal{H}, i \in I$, satisfying the following canonical commutation (or ' $q_{i j}$ ' mutator') relations,

$$
\begin{align*}
& a_{i} a_{j}^{\dagger}-q_{i j} a_{j}^{\dagger} a_{i}=\delta_{i j} \quad i, j \in I \tag{1}\\
& a_{i}|0\rangle=0 \quad i \in I \tag{2}
\end{align*}
$$

where a_{i}^{\dagger} denotes the adjoint of a_{i}, and $|0\rangle$ denotes a distinguished ('vacuum') vector in \mathcal{H}.

Any total order on the indexing set I induces a total order on the set I^{*} of all sequences (=words) $\mathbf{i}=i_{1} \cdots i_{n}$ over I. Then we can consider the Gram matrix

$$
\begin{equation*}
A=(\langle\mathbf{i} \mid \mathbf{j}\rangle) \tag{3}
\end{equation*}
$$

of all n-particle states $|\mathbf{i}\rangle:=a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} \cdots a_{i_{n}}^{\dagger}|0\rangle\left(i_{j} \in I, n \geqslant 0\right)$. Its entries $\langle\mathbf{i} \mathbf{i} \mathbf{j}\rangle$ are the 'expectation values' (i.e. overlaps of n-particle states in the second quantized Fock description)

$$
\langle 0| a_{i_{n}} \cdots a_{i_{1}} a_{j_{1}}^{\dagger} \cdots a_{j_{m}}^{\dagger}|0\rangle
$$

These entries vanish, unless (i) $n=m$ and (ii) $i_{1} \cdots i_{n}$ and $j_{1} \cdots j_{m}$ are permutations of the same weakly increasing sequences $v=k_{1} \ldots k_{n}, k_{1} \leqslant \cdots \leqslant k_{n}, k_{j} \in I$, which we shall call weights. Thus the matrix A is block diagonal (cf [9, proposition 1.6.1]):

$$
\begin{equation*}
A=\oplus_{n \geqslant 0} \oplus_{k_{1} \leqslant \cdots \leqslant k_{n}} A^{k_{1} \ldots k_{n}} \tag{4}
\end{equation*}
$$

with blocks $A^{v}=A^{k_{1} \ldots k_{n}}$ indexed by weights. The size of A^{v} is equal to the number of permutations (or rearrangements) of the multiset $\left\{k_{1} \leqslant \cdots \leqslant k_{n}\right\}$.

For $v=k_{1}<k_{2}<\cdots<k_{n}$ (a generic weight), A^{ν} is a matrix of order n ! with rows/columns labelled by rearrangements (of ν) $\mathbf{i}=i_{1} \cdots i_{n}=k_{\pi(1)} \ldots k_{\pi(n)}=: \nu \cdot \pi(\pi \in$ $S_{n}=$ the nth symmetric group) or simply by permutations $\pi \in S_{n}$. The entry of A^{ν} in the row $\mathbf{i}=\nu \cdot \pi$ and column $\mathbf{j}=\nu \cdot \sigma$ is then given explicitly by the following formula,

$$
\begin{equation*}
A_{\mathbf{i}, \mathbf{j}}^{v}=A^{\nu}(\pi, \sigma)=\prod_{(r, s) \in I\left(\sigma^{-1} \pi\right)} q_{k_{\pi(r)} k_{\pi(s)}} \tag{5}
\end{equation*}
$$

where, for $\pi \in S_{n}, I(\pi)$ denotes the set of inversions of $\pi: I(\pi)=\{(r, s): 1 \leqslant r<s \leqslant$ $n, \pi(r)>\pi(s)\}$. Thus, we can view A^{ν} as a linear operator on the group algebra $\mathbf{C}\left[S_{n}\right]=$ $\left\{\sum_{\pi \in S_{n}} c_{\pi} \pi: c_{\pi} \in \mathbf{C}, \pi \in S_{n}\right\}$.

For general weights $\tilde{v}=\left(\tilde{k}_{1}=\cdots=\tilde{k}_{n_{1}}<\tilde{k}_{n_{1}+1}=\cdots=\tilde{k}_{n_{1}+n_{2}}<\cdots<\tilde{k}_{n_{1}+\cdots+n_{p-1}+1}=\right.$ $\left.\cdots=\tilde{k}_{n}\right), n_{1}+n_{2}+\cdots+n_{p}=n$, the matrix $A^{\tilde{v}}$ has order equal to $n!/ n_{1}!\cdots n_{p}!$ and its rows/columns are labelled by rearrangements $\mathbf{i}=i_{1} \cdots i_{n}=\tilde{v} \cdot \tilde{\pi}, \tilde{\pi} \in H_{\tilde{v}} \backslash S_{n}$, where $H_{\tilde{v}}=\operatorname{Stab}_{\tilde{v}}=\left\{\sigma \in S_{n} \mid \tilde{v} \cdot \sigma=\tilde{v}\right\}$ is the (stabilizer) subgroup fixing \tilde{v}. The (i, j) th entry of $A^{\tilde{v}}, \mathbf{i}=\tilde{v} \cdot \tilde{\pi}, \mathbf{j}=\tilde{v} \cdot \tilde{\sigma}, \tilde{\pi}=H \pi, \tilde{\sigma}=H \sigma$, where π, σ are unique coset representatives (of minimal length) of $\tilde{\pi}, \tilde{\sigma}$, is given by
$A_{\mathbf{i}, \mathbf{j}}^{\tilde{\nu}}=A^{\tilde{\nu}}(\tilde{\pi}, \tilde{\sigma})=\prod_{\tau \in \tilde{\sigma}^{-1} \tilde{\pi}=\sigma^{-1} H \pi} \prod_{(r, s) \in I(\tau)} q_{i_{r} i_{s}}=\sum_{\tau \in \sigma^{-1} H \pi} \prod_{(r, s) \in I(\tau)} q_{k_{\pi(r)} k_{\pi(s)}}$.
(Note that ($\tilde{5}$) generalizes (5), because $\operatorname{Stab}_{v}=H_{v}=\{1\}$, if v is generic.) In [9, subsection 1.7] it is shown that the operator $A^{\tilde{\nu}}$ can be obtained from $A^{v}\left(\nu=k_{1}<\cdots<k_{n}\right)$ by a reduction procedure in two steps: first by identifying indices $k_{1} \mapsto \tilde{k}_{1}, \ldots, k_{n} \mapsto \tilde{k}_{n}$ and then restricting this specialized operator $\left.A^{\nu}\right|_{\nu \mapsto \tilde{v}}$ to the invariant subspace (in $\mathbf{C}\left[S_{n}\right]$) spanned by $H_{\tilde{\nu}}$-invariant vectors $\bar{\sigma}=\sum_{h \in H_{\bar{v}}} h \sigma \in \mathbf{C}\left[S_{n}\right]$. In fact ($\tilde{5}$) can be rewritten as

$$
\begin{equation*}
A^{\tilde{v}}(\tilde{\pi}, \tilde{\sigma})=\left.\sum_{h \in H_{\tilde{v}}} A^{\nu}(\pi, h \sigma)\right|_{\nu \mapsto \tilde{v}} . \tag{6}
\end{equation*}
$$

As a consequence we obtain the following: if $\left.A^{\nu}\right|_{\nu \mapsto \tilde{v}}$ is invertible, then the matrix $A^{\tilde{\nu}}$ is invertible too, and a relation analogous to (6) holds for the inverses. In particular, $\operatorname{det} A^{\tilde{v}}$ divides $\left.\operatorname{det} A^{\nu}\right|_{\nu \mapsto \tilde{v}}$. This shows that in order to study some properties (e.g. invertibility or positive definiteness) it suffices to consider the generic case (when all the indices k_{i} are distinct).

Now we list some properties of the matrices $A^{v}, v=k_{1}<k_{2} \cdots<k_{n}$:

$$
\begin{equation*}
\text { (a) } A^{v}(\pi, \pi)=1 \tag{7}
\end{equation*}
$$

(b) $A^{\nu}(\sigma, \pi)=A^{\nu}(\pi, \sigma)^{*} \quad$ (Hermiticity)
(c) Let $w_{n}=n \ldots 21$ be the longest permutation in S_{n}. Then

$$
\begin{equation*}
A^{v}\left(\pi w_{n}, \sigma w_{n}\right)=A^{v}(\sigma, \pi)=A^{v}(\pi, \sigma)^{*} \tag{9}
\end{equation*}
$$

Property (c) can be rewritten in the matrix form as follows,

$$
\begin{equation*}
W A^{v} W=\left(A^{\nu}\right)^{T} \quad W^{2}=1 \tag{10}
\end{equation*}
$$

where

$$
W(\pi, \sigma)= \begin{cases}1 & \text { if } \pi w_{n}=\sigma \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

It is important to note that the Fock space, in our case, is positive definite iff the Gram matrix A is positive definite. Recall that a sufficient condition for the positivity of the norm squared of all vectors is (cf [9, theorem 1.9.4])

$$
\begin{equation*}
\left|q_{i j}\right|<1 \quad \forall i, j \in I \tag{12}
\end{equation*}
$$

In particular, condition (12) implies that the n-particle states $|\mathbf{i}\rangle=a_{i_{1}}^{\dagger} \cdots a_{i_{n}}^{\dagger}|0\rangle\left(i_{j} \in I, n \geqslant 0\right)$ are linearly independent.

Examples. For the generic weights $v=1,12,123$ the Gram matrices are as follows:
$A^{1}=(1) \quad A^{12}=\left(\begin{array}{cc}1 & q_{12} \\ q_{21} & 1\end{array}\right)$

$A^{123}=$| $\pi \backslash \sigma$ | 123 | 132 | 312 | 321 | 231 | 213 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 123 | 1 | q_{23} | $q_{13} q_{23}$ | $q_{12} q_{13} q_{23}$ | $q_{12} q_{13}$ | q_{12} |
| 132 | q_{32} | 1 | q_{13} | $q_{12} q_{13}$ | $q_{12} q_{13} q_{32}$ | $q_{12} q_{32}$ |
| 312 | $q_{31} q_{32}$ | q_{31} | 1 | q_{12} | $q_{12} q_{32}$ | $q_{12} q_{31} q_{32}$ |
| 321 | $q_{21} q_{31} q_{32}$ | $q_{21} q_{31}$ | q_{21} | 1 | q_{32} | $q_{31} q_{32}$ |
| 231 | $q_{21} q_{31}$ | $q_{21} q_{31} q_{23}$ | $q_{21} q_{23}$ | q_{23} | 1 | q_{31} |
| 213 | q_{21} | $q_{21} q_{23}$ | $q_{21} q_{13} q_{23}$ | $q_{13} q_{23}$ | q_{13} | 1 |

(Here we use the Johnson-Trotter ordering of permutations: 123, 132, 312, 321, 231, 213.)
For the non-generic: $\tilde{v}=11,113$, the Gram matrices are

$$
A^{11}=\left(1+q_{11}\right) \quad A^{113}=\begin{array}{|c|c|c|c|}
\hline \pi)^{\sigma} & 113 & 131 & 311 \\
\hline 113 & 1+q_{11} & q_{13}+q_{11} q_{13} & q_{13}^{2}+q_{11} q_{13}^{2} \\
\hline 131 & q_{31}+q_{11} q_{31} & 1+q_{11} q_{13} q_{31} & q_{13}+q_{11} q_{13} \\
\hline 311 & q_{31}^{2}+q_{11} q_{31}^{2} & q_{31}+q_{11} q_{31} & 1+q_{11} \\
\hline
\end{array}
$$

The inverses of the Gram matrices in the generic case above are given by

$$
\left[A^{12}\right]^{-1}=\frac{1}{\Delta^{12}}\left(\begin{array}{cc}
1 & -q_{12} \\
-q_{21} & 1
\end{array}\right)=\frac{1}{\Delta^{12}}\left(\begin{array}{cc}
1 & q_{12} \\
q_{21} & 1
\end{array}\right) *\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

where $\Delta^{12}:=1-q_{12} q_{21}=1-\left|q_{12}\right|^{2}$, and

$$
\left[A^{123}\right]^{-1}=\frac{1}{\Delta^{123}} A^{123} * M^{123}
$$

Here $\Delta^{123}:=\left(1-\left|q_{12}\right|^{2}\right)\left(1-\left|q_{13}\right|^{2}\right)\left(1-\left|q_{23}\right|^{2}\right)\left(1-\left|q_{12}\right|^{2}\left|q_{13}\right|^{2}\left|q_{23}\right|^{2}\right)$, ‘*' denotes the Schur product of matrices $\left(a_{i j}\right) *\left(b_{i j}\right):=\left(a_{i j} b_{i j}\right)$ and M^{123} stands for the following matrix,

π^{σ}	123	132	312	321	231	213
123	$(1-a c)(1-b)$	$(b-1)(1-c)$	$c(b-1)(1-a)$	$(1-a c)(1-b)$	$a(b-1)(1-c)$	$(b-1)(1-a)$
132	$(c-1)(1-b)$	$(1-a b)(1-c)$	$(c-1)(1-a)$	$a(c-1)(1-b)$	$(1-a b)(1-c)$	$b(c-1)(1-a)$
312	$(a-1)(1-b)$	$(a-1)(1-c)$	$(1-b c)(1-a)$	$(a-1)(1-b)$	$b(a-1)(1-c)$	$(1-b c)(1-a)$
321	$(1-a c)(1-b)$	$a(b-1)(1-c)$	$(b-1)(1-a)$	$(1-a c)(1-b)$	$(b-1)(1-c)$	$c(b-1)(1-a)$
231	$a(c-1)(1-b)$	$(1-a b)(1-c)$	$b(c-1)(1-a)$	$(c-1)(1-b)$	$(1-a b)(1-c)$	$(c-1)(1-a)$
213	$(a-1)(1-b)$	$b(a-1)(1-c)$	$(1-b c)(1-a)$	$c(a-1)(1-b)$	$(a-1)(1-c)$	$(1-b c)(1-a)$

(with $a:=\left|q_{23}\right|^{2}, b:=\left|q_{13}\right|^{2}, c:=\left|q_{12}\right|^{2}$).
The inverse in the non-generic case $v=113$ is given by

$$
\left[A^{113}\right]^{-1}=\frac{1}{\Delta^{113}}\left(\begin{array}{ccc}
1 & -\left(1+q_{11}\right) q_{13} & q_{11} q_{13}^{2} \\
-q_{31}\left(1+q_{11}\right) & \left(1+q_{11}\right)\left(1+q_{13} q_{31}\right) & -\left(1+q_{11}\right) q_{13} \\
q_{31}^{2} q_{11} & -q_{31}\left(1+q_{11}\right) & 1
\end{array}\right)
$$

where $\Delta^{113}=\left(1+q_{11}\right)\left(1-q_{13} q_{31}\right)\left(1-q_{11} q_{13} q_{31}\right)=\left(1+q_{11}\right)\left(1-\left|q_{13}\right|^{2}\right)\left(1-q_{11}\left|q_{13}\right|^{2}\right)$.

3. Series expansions of number operators

First we recall that the k th particle number operator $N_{k}(k \in I)$ (in the Fock representation satisfying the positivity condition (12)) is a diagonal operator which counts the number of appearances of the creation operator a_{k}^{\dagger} in any multiparticle state $|\mathbf{i}\rangle$. These operators satisfy the following implicit conditions (equations):

$$
\begin{array}{ll}
{\left[N_{k}, a_{l}\right]=-a_{k} \delta_{k l}} & \forall k, l \in I \\
N_{k}|0\rangle=0 & \forall k \in I . \tag{13}
\end{array}
$$

Note that for any fixed $k \in I$, if we assume (12), equations (13) have a unique solution for N_{k}. The number operators play an important role in constructing the free Hamiltonian (=the energy operator) of the free system (for which the energy is additive, cf [3]) of generalized quon particles in the nonrelativistic limit:

$$
\begin{equation*}
H=\sum_{k \in I} E_{k} N_{k} . \tag{14}
\end{equation*}
$$

More generally, our primary goal here is to express N_{k} in terms of quon algebra generators as a normally ordered infinite series involving certain iterated deformed commutators of the creation and annihilation operators.

It is already indicated in [8] that the formal expansion of the number operator N_{k} in terms of normally ordered products is necessarily of the following form which preserves each n-particle subspace (it easily follows from (3)),

$$
\begin{equation*}
N_{k}=\sum_{\mathbf{i} \in I^{+}, i_{1}=k} X_{\mathbf{i}}^{\dagger} Y_{\mathbf{i}} \tag{15}
\end{equation*}
$$

where I^{+}denotes the set of all nonempty words (or sequences) $\mathbf{i}=i_{1} \ldots i_{n}, n \geqslant 1$ over the set I as an alphabet, and the sum is over those words which begin with letter k. Here, if the indices i_{1}, \ldots, i_{n} are distinct, we require that $X_{\mathbf{i}}$ and $Y_{\mathbf{i}}$ are both multihomogeneous of the same multidegree, i.e. they are expressible as a linear combination of all rearrangements $a_{\mathbf{j}}=a_{\mathbf{i}} \cdot \pi:=a_{\mathbf{i} \cdot \pi}\left(=a_{i_{\pi(1)}} a_{i_{\pi(2)}} \cdots a_{i_{\pi(n)}}\right)$ of the 'monomial' $a_{\mathbf{i}}=a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}$, in the following form,

$$
\begin{align*}
& X_{\mathbf{i}}=\sum_{\pi \in S_{n}} a_{\mathbf{i} \cdot \pi} x_{\mathbf{i} \cdot \pi, \mathbf{i}} \tag{16}\\
& Y_{\mathbf{i}}=\sum_{\pi \in S_{n}} a_{\mathbf{i} \cdot \pi} y_{\mathbf{i} \cdot \pi, \mathbf{i}} \tag{17}
\end{align*}
$$

where $x_{\mathbf{i} \cdot \pi, \mathbf{i}}$ and $y_{\mathbf{i} \cdot \pi, \mathbf{i}}$ are, as yet unknown, coefficients (depending on $q_{i j}$) with the following normalization convention $y_{i, i}=1$. For general \mathbf{i}, we require that the summations in (16) and (17) should be replaced by summations over the left cosets $H \backslash S_{n}$, where $H=\mathrm{Stab}_{\mathbf{i}}$ is the stabilizer subgroup of S_{n} fixing \mathbf{i}, with coefficients $\tilde{x}_{\mathbf{i} \cdot \tilde{\pi}, \mathbf{i}}, \tilde{y}_{\mathbf{i} \cdot \tilde{\pi}, \mathbf{i}}, \tilde{\pi} \in H \backslash S_{n}$ equal to the following orbit sums:

$$
\begin{align*}
& \tilde{x}_{\mathbf{i} \cdot \tilde{\pi}, \mathbf{i}}=\sum_{h \in H} x_{\mathbf{i} \cdot h \pi, \mathbf{i}} \tag{18}\\
& \tilde{y}_{\mathbf{i} \cdot \tilde{\pi}, \mathbf{i}}=\sum_{h \in H} y_{\mathbf{i} \cdot h \pi, \mathbf{i}} .
\end{align*}
$$

Now we start finding the solution of the system (13), in the form (15), as follows: we first use the fact that under condition (12), the set of all monomials $a_{i_{n}}^{\dagger} \cdots a_{i_{1}}^{\dagger} a_{j_{1}} \cdots a_{j_{m}}\left(i_{k}, j_{l} \in I\right)$ is linearly independent. Then, we plug the right-hand side of (15) into the system (13). By resolving it successively in degree 1, then in degree 2, etc, we obtain the following (noncommutative) recursions for Y_{i} :

Recursions for Y

$$
\begin{equation*}
Y_{i_{1} i_{2} \cdots i_{n}}=Y_{i_{1} \cdots i_{n-1}} a_{i_{n}}-q_{i_{n} i_{1}} q_{i_{n} i_{2}} \cdots q_{i_{n} i_{n-1}} a_{i_{n}} Y_{i_{1} \cdots i_{n-1}} \tag{19}
\end{equation*}
$$

and similarly, a system of 'twisted' partial differential equations for $X_{\mathbf{i}}$,
Equations for X

$$
\begin{equation*}
{ }_{l} \partial\left(X_{i_{1} \cdots i_{n}}\right)^{\dagger}=\left(X_{i_{1} \cdots i_{n-1}}\right)^{\dagger} \delta_{l i_{n}} \quad\left(l \in\left\{i_{1}, \ldots, i_{n}\right\}\right) \tag{20}
\end{equation*}
$$

where ${ }_{l} \partial$ denotes the left twisted derivative,

$$
\begin{equation*}
l_{l} \partial\left(a_{j_{1}}^{\dagger} \cdots a_{j_{n}}^{\dagger}\right)=\sum_{\left(p: j_{p}=l\right)} q_{l j_{1}} \cdots q_{l j_{p-1}} a_{j_{1}}^{\dagger} \cdots \widehat{a_{j_{p}}^{\dagger}} \cdots a_{j_{n}}^{\dagger} \tag{21}
\end{equation*}
$$

(${ }^{\text {d denotes the omission of the corresponding creation operator). }}$
Proposition 1. The Y-components (17) of the solution (15) of equation (13) are given by the following iterated \mathbf{q}-commutator ('generalized Lie elements') formula,

$$
\begin{align*}
& Y_{i_{1}}=a_{i_{1}} \\
& Y_{i_{1} i_{2} \ldots i_{n}}=\left[\cdots\left[\left[a_{i_{1}}, a_{i_{2}}\right]_{q_{i_{2} i_{1}}}, a_{i_{3}}\right]_{q_{i_{3} i_{1}} q_{i_{3} i_{2}}}, \ldots, a_{i_{n}}\right]_{q_{i_{n} i_{1}} q_{i n i_{2}} \cdots q_{i_{n} i_{n-1}}} \tag{22}
\end{align*}
$$

where $[x, y]_{q}=x y-q y x$ denotes the q-commutator of x and y. (For N_{k} we need to set $i_{1}=k$.)

Proof. By iterating (19).

In order to express the formula (22) (and some others later) in the operator form we shall now introduce a twisted group algebra of the permutation group.

4. A twisted group algebra action

Let us consider the following.
(1) A right action of the symmetric group S_{n}, by permuting factors of any degree n monomial in the annihilation operators:

$$
\begin{equation*}
a_{\mathbf{i}} \cdot \pi=\left(a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}\right) \cdot \pi:=a_{i_{\pi(1)}} a_{i_{\pi(2)}} \cdots a_{i_{\pi(n)}} \tag{23}
\end{equation*}
$$

(2) A 'diagonal' action of the formal power series ring $K_{n}=\mathbf{C}\left[\left[Q_{k, l}, 1 \leqslant k, l \leqslant n\right]\right]$ (where $Q_{k, l}$ are commuting indeterminates) defined by

$$
\begin{equation*}
a_{\mathbf{i}} \cdot Q_{k, l}\left(=\left(a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}\right) \cdot Q_{k, l}\right):=q_{i_{k} i_{l}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}} . \tag{24}
\end{equation*}
$$

(Here $q_{i j}$ are complex numbers from the canonical commutation relations (1)!) These two actions give rise to an action of a twisted group algebra:

$$
\begin{equation*}
\mathcal{K}_{n}=K_{n} \sim\left[S_{n}\right] \tag{25}
\end{equation*}
$$

of S_{n} (with coefficients in K_{n}). The multiplication in the algebra \mathcal{K}_{n} is defined by imposing the following commutation relations ('an action of S_{n} on the coefficient ring K_{n} ')

$$
\begin{equation*}
\pi Q_{k, l}=Q_{\pi(k) \pi(l)} \pi \tag{26}
\end{equation*}
$$

It is clear that, by specializing $Q_{k, l}=q(1 \leqslant k, l \leqslant n)$, the twisted group algebra $K_{n}{ }^{\sim}\left[S_{n}\right]$ is mapped onto the ordinary group algebra $\mathbf{C}[[q]]\left[S_{n}\right]$ in which, according to Zagier [15], live certain important elements: $\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}$ satisfying
$\alpha_{n}=\alpha_{n-1} \beta_{n}, \beta_{n}=\delta_{n} \gamma_{n}^{-1}\left(\Rightarrow \alpha_{n}=\beta_{2} \cdots \beta_{n}=\delta_{2} \gamma_{2}^{-1} \delta_{3} \gamma_{3}^{-1} \cdots \gamma_{n-1}^{-1} \delta_{n} \gamma_{n}^{-1}\right)$.
(Note that our notation for δ_{n} is shifted by 1 compared with [15], which seems to be more natural!)

These elements, via the regular representation R_{n}, were crucial in Zagier's computation of the determinant and the inverse of the one-parameter matrices $A_{n}=A_{n}(q)=R_{n}\left(\alpha_{n}\right)$. We shall now define a 'lifting' to $K_{n}{ }^{\sim}\left[S_{n}\right]$ of the Zagier elements by first defining, for each permutation $\pi \in S_{n}$, an element $\tilde{\pi} \in K_{n}{ }^{\sim}\left[S_{n}\right],\left(\pi \in S_{n}\right)$, which encodes all inversions of π :

$$
\begin{equation*}
\tilde{\pi}:=Q_{\pi} \pi \quad \text { where } \quad Q_{\pi}:=\prod_{1 \leqslant k<l \leqslant n, \pi(k)>\pi(l)} Q_{\pi(k), \pi(l)} \tag{28}
\end{equation*}
$$

with the multiplication rule

$$
\tilde{\sigma} \tilde{\pi}=\left(\prod_{(a, b) \in I(\sigma) \cap I\left(\pi^{-1}\right)} Q_{\sigma(a), \sigma(b)} Q_{\sigma(b), \sigma(a)}\right) \widetilde{\sigma \pi} .
$$

(Observe that $\tilde{\pi}$ generalizes $q^{i(\pi)} \pi, i(\pi):=$ the number of inversions of π.)
Then we define a 'lifting' of all Zagier's elements by the following formulae:

$$
\begin{align*}
\tilde{\alpha}_{n} & :=\sum_{\pi \in S_{n}} \tilde{\pi} \tag{29}\\
\tilde{\beta}_{n} & :=\sum_{k=1}^{n} \tilde{t}_{k, n} \tag{30}\\
\tilde{\gamma}_{n} & :=\left(1-\tilde{t}_{1, n}\right)\left(1-\tilde{t}_{2, n}\right) \cdots\left(1-\tilde{t}_{n-1, n}\right) \tag{31}\\
\tilde{\delta}_{n} & :=\left(1-\tilde{t}_{n-1} \tilde{t}_{1, n}\right)\left(1-\tilde{t}_{n-1} \tilde{t}_{2, n}\right) \cdots\left(1-\tilde{t}_{n-1} \tilde{t}_{n-1, n}\right) \tag{32}
\end{align*}
$$

Similarly we define

$$
\begin{equation*}
\tilde{\alpha}_{n_{1}, n_{2}, \ldots, n_{k}}:=\sum_{\pi \in S_{n_{1}} \times S_{n_{2}} \times \cdots \times S_{n_{k}}} \tilde{\pi} . \tag{29a}
\end{equation*}
$$

(Here $t_{k, l}$ denotes the cycle $\left(\begin{array}{cccc}k & k+1 & \cdots & l \\ l & k & \cdots & l-1\end{array}\right) \in S_{n}$ and $t_{k}:=t_{k, k+1}$.)
It is easy to check that the following relations, analogous to (27), hold true:
$\tilde{\alpha}_{n}=\tilde{\alpha}_{n-1} \tilde{\beta}_{n}, \tilde{\beta}_{n}=\tilde{\delta}_{n} \tilde{\gamma}_{n}^{-1}\left(\Rightarrow \tilde{\alpha}_{n}=\tilde{\beta}_{2} \cdots \tilde{\beta}_{n}=\tilde{\delta}_{2} \tilde{\gamma}_{2}^{-1} \tilde{\delta}_{3} \tilde{\gamma}_{3}^{-1} \cdots \tilde{\gamma}_{n-1}^{-1} \tilde{\delta}_{n} \tilde{\gamma}_{n}^{-1}\right)$.
Important note. Now we can realize all Gram matrices A^{ν} from (4) as the matrices of the right multiplication by the lifted Zagier element $\tilde{\alpha}_{n}$ on the space of monomials $a_{\mathbf{i}}$ of weight v. This explains why we needed to introduce a twisted group algebra in the multiparameter case.

In what follows, we shall also need the following notation:

$$
\begin{align*}
& Q_{\{\pi\}}:=\prod_{1 \leqslant k<l \leqslant n, \pi(k)>\pi(l)} Q_{\pi(k), \pi(l)} Q_{\pi(l), \pi(k)}\left(\text { for any } \pi \in S_{n}\right) \tag{34}\\
& Q_{T}:=\prod_{k \neq l \in T} Q_{k, l}(\text { for any set } T \subseteq\{1,2, \ldots, n\}) \tag{35}
\end{align*}
$$

together with the following lemma which we shall use in the proof of the main result:
Lemma 1. We have the following identity in \mathcal{K}_{n} :

$$
\begin{equation*}
\tilde{\alpha}_{n-1,1}\left(1-\tilde{t}_{n-1} \tilde{t}_{1, n}\right)=\xi_{n} \tilde{\alpha}_{1, n-2,1} \tag{36}
\end{equation*}
$$

where $\xi_{n}:=\sum_{k=1}^{n-1}\left(1-Q_{\{k, k+1\}} \cdots Q_{\{k, n\}}\right) \tilde{t}_{1, k}$.
(Recall from (29a) that $\tilde{\alpha}_{n-1,1}=\sum_{\pi \in S_{n-1} \times S_{1}} \tilde{\pi}, \tilde{\alpha}_{1, n-2,1}=\sum_{\pi \in S_{1} \times S_{n-2} \times S_{1}} \tilde{\pi}$.)
Proof. By definition $\tilde{\alpha}_{n-1,1}=\sum_{\pi \in S_{n-1} \times S_{1}} \tilde{\pi}$. By using a factorization $\pi=t_{1, k} \sigma$, where $\pi(1)=k, \sigma \in S_{1} \times S_{n-2} \times S_{1}$, we get $\tilde{\alpha}_{n-1,1}=\left(\sum_{k=1}^{n-1} \tilde{t}_{1, k}\right) \tilde{\alpha}_{1, n-2,1}$ (here we used that $\left.\tilde{\pi}=\tilde{t}_{1, k} \tilde{\sigma}, \operatorname{cf}(28)\right)$. Similarly,

$$
\begin{aligned}
\tilde{\alpha}_{n-1,1} \tilde{t}_{n-1} \tilde{t}_{1, n} & =\sum_{\pi \in S_{n-1} \times S_{1}} \tilde{\pi} \tilde{t}_{n-1} \tilde{t}_{1, n}=\sum_{\pi \in S_{n-1} \times S_{1}} \tilde{\pi} Q_{\{n-1, n\}} \tilde{t}_{1, n-1} \\
& =\sum_{\pi \in S_{n-1} \times S_{1}} Q_{\{\pi(n-1), \pi(n)\}} \tilde{\pi} \tilde{t}_{1, n-1} \\
& =\sum_{\pi \in S_{n-1} \times S_{1}} Q_{\{\pi(n-1), n\}} Q_{\left\{t_{\pi(n-1), n-1}\right\}} \tilde{\pi}_{1, n-1} \quad \text { (by (28)) } \\
& =\sum_{\sigma \in S_{1} \times S_{n-2} \times S_{1}} Q_{\left\{t_{\pi(n-1),\}}^{-1}\right\}} \tilde{t}_{1, \pi(n-1)} \tilde{\sigma}\left[t_{1, \pi(n-1)} \sigma=\pi t_{1, n-1}\right] \\
& =\left(\sum_{k=1}^{n-1} Q_{\left\{t_{k, n}^{-1}\right\}} \tilde{t}_{1, k}\right) \tilde{\alpha}_{1, n-2,1} .
\end{aligned}
$$

By subtracting the last two formulae, the lemma follows.
Now we state the formula (22) in the operator form:

Corollary 1. We have
(i) $Y_{i_{1} \cdots i_{n}}=\left(a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}\right) \cdot \overline{\gamma_{n}}$, where $\overline{\gamma_{n}}:=\left(1-\widetilde{t}_{1,2}\right)\left(1-\widetilde{t}_{1,3}\right) \cdots\left(1-\tilde{t}_{1, n}\right) \in \mathcal{K}_{n}$.
(ii) $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}=Y_{i_{1} \cdots i_{n}} \cdot{\overline{\gamma_{n}}}^{-1}$, with

$$
{\overline{\gamma_{n}}}^{-1}=\sum_{\pi \in S_{n}} \tilde{\pi} \cdot \prod_{\pi(i)>\pi(i+1)} Q_{\{1, \ldots, i\}} /\left(1-Q_{\{1,2\}}\right) \cdots\left(1-Q_{\{1, \ldots, n\}}\right) .
$$

(iii) The set $\left\{Y_{\mathbf{i} \cdot \tilde{\pi}} \mid \tilde{\pi} \in H \backslash S_{n}\right\}\left(H=\right.$ Stab $\left._{\mathbf{i}}\right)$ is a linearly independent set if $\left|q_{i_{r} i_{s}}\right|<1,1 \leqslant r \neq$ $s \leqslant n$.

Proof. (i) Formula (22) can be rewritten as
$Y_{i_{1} i_{2} \cdots i_{n}}=a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}\left(1-q_{i_{2} i_{1}} t_{1,2}\right)\left(1-q_{i_{3} i_{1}} q_{i_{3} i_{2}} t_{1,3}\right) \cdots\left(1-q_{i_{n} i_{1}} q_{i_{n} i_{2}} \cdots q_{i_{n} i_{n-1}} t_{1, n}\right)$.
By using $\tilde{t}_{1, l}=Q_{l, 1} \cdots Q_{l, l-1} t_{1, l}=t_{1, l} Q_{1,2} Q_{1,3} \cdots Q_{1, l}$ the claim (i) follows. (ii) The proof of (ii) is similar to that of proposition 2.1.1 in [10]. (iii) Follows from (ii).

Proposition 2. The Y_{i} satisfy the following (twisted) differential equations:

$$
\begin{align*}
& \text { (i) } l \partial\left(Y_{i_{1} \cdots i_{n}}\right)^{\dagger}=\sum_{\left(j \geqslant 2: i_{j}=l\right)} d_{i_{1} \cdots i_{n}}^{(j)}\left(Y_{i_{1} \cdots \hat{i}_{j} \cdots i_{n}}\right)^{\dagger} \quad(n \geqslant 2) \\
& \text { (ii) } l \partial Y_{i_{1}}^{\dagger}=\delta_{i_{1} l} \quad(n=1) \tag{37}
\end{align*}
$$

where ${ }_{l} \partial$ is defined in (21), and where

$$
\begin{equation*}
d_{i_{1} \cdots i_{n}}^{(j)}:=q_{i_{j} j_{j+1}} \cdots q_{i_{j} i_{n}}\left(1-\left|q_{i_{j} i_{1}} \cdots q_{i_{j i} i_{j-1}}\right|^{2}\right) \tag{38}
\end{equation*}
$$

Proof. By induction. For $n=2$ we have $Y_{i_{1} i_{2}}=\left[a_{i_{1}}, a_{i_{2}}\right]_{q_{i_{2} i_{1}}}=a_{i_{1}} a_{i_{2}}-q_{i_{2} i_{1}} a_{i_{2}} a_{i_{1}}$ which $\operatorname{implies}\left(Y_{i_{1} i_{2}}\right)^{\dagger}=a_{i_{2}}^{\dagger} a_{i_{1}}^{\dagger}-q_{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger}$ (here we use $\left.\left(q_{i j}\right)^{*}=q_{j i}\right)$. Hence

$$
\begin{aligned}
{ }_{l} \partial\left(Y_{i_{1} i_{2}}\right)^{\dagger} & =\delta_{l i_{2}} a_{i_{1}}^{\dagger}+\delta_{l i_{1}} q_{l i_{2}} a_{i_{2}}^{\dagger}-q_{i_{1} i_{2}}\left(\delta_{l i_{1}} a_{i_{2}}^{\dagger}+\delta_{l i_{2}} q_{l i_{1}} a_{i_{1}}^{\dagger}\right) \\
& =\left(1-q_{i_{1} i_{2}} q_{i_{2} i_{1}}\right) a_{i_{1}}^{\dagger} \delta_{l i_{2}}=d_{i_{i_{1}} i_{2}}^{(2)} Y_{i_{1}}^{\dagger} \delta_{l i_{2}} .
\end{aligned}
$$

Now we suppose that (25) holds true for $n-1$. Then, from (19) it follows that

$$
\begin{aligned}
& \begin{array}{l}
l \partial\left(Y_{i_{1} \cdots i_{n}}\right)^{\dagger}= \\
=l \partial\left[a_{i_{n}}^{\dagger}\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger}-q_{i_{1} i_{n}} \cdots q_{i_{n-1} i_{n}}\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger} a_{i_{n}}^{\dagger}\right] \\
\quad=\delta_{l i_{n}}\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger}+q_{l i_{n}} a_{i_{n}}^{\dagger} \partial\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger} \\
-q_{i_{1} i_{n}} \cdots q_{i_{n-1} i_{n}}\left[\iota \partial\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger} a_{i_{n}}^{\dagger}+q_{i_{n} i_{1}} \cdots q_{i_{n} i_{n-1}} \delta_{l i_{n}}\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger}\right] \\
\quad=\delta_{l i_{n}}\left(1-\left|q_{i_{1} i_{2}} \cdots q_{i_{n-1} i_{n}}\right|^{2}\right)\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger}+ \\
\sum_{j=2 ; i_{j}=l}^{n-1} q_{l i_{n}} d_{i_{1} \cdots i_{n-1}}^{(j)}\left[a_{i_{n}}^{\dagger}\left(Y_{i_{1} \cdots \hat{i_{j} \cdots i_{n-1}}}\right)^{\dagger}-q_{i_{1} i_{n}} \cdots \widehat{q_{l i_{n}}} \cdots q_{i_{n-1} i_{n}}\left(Y_{i_{1} \cdots i_{j} \cdots i_{n-1}}\right)^{\dagger} a_{i_{n}}^{\dagger}\right] \\
\quad=\delta_{l i_{n}} d_{i_{1} \cdots i_{n}}^{(n)}\left(Y_{i_{1} \cdots i_{n-1}}\right)^{\dagger}+\sum_{j=2 ; i_{j}=l}^{n-1} d_{i_{1} \cdots i_{n}}^{(j)}\left(Y_{i_{1} \cdots i_{j} \cdots i_{n}}\right)^{\dagger}=\sum_{n \geqslant j \geqslant 2 ; i_{j}=l} d_{i_{1} \cdots i_{n}}^{(j)}\left(Y_{i_{1} \cdots i_{j} \cdots i_{n}}\right)^{\dagger} .
\end{array}
\end{aligned}
$$

This completes the proof of proposition 2.
Now we proceed with solving (20) to get X_{i}-components of our number operator N_{k}. There are two approaches.

The first approach, developed in [8], is based on an observation that in (37) the index i_{1} survives in all terms of the rhs. So, we could look for X_{i} in the form of a linear combination of such $Y_{\mathbf{i}}$ with the first index fixed ($=k$ for N_{k}).

$$
\begin{equation*}
\left(X_{\mathbf{i}}\right)^{\dagger}=\sum_{\mathbf{j}=\mathbf{i} \cdot \pi, \pi \in S_{1} \times S_{n-1}}\left(Y_{\mathbf{j}}\right)^{\dagger} c_{\mathbf{j}, \mathbf{i}} . \tag{39}
\end{equation*}
$$

By applying the twisted derivative ${ }_{l} \partial$ to (39), the left-hand side gives

$$
\begin{aligned}
l^{\partial}\left(X_{\mathbf{i}}\right)^{\dagger} & =\left(X_{i_{1} \cdots i_{n-1}}\right)^{\dagger} \delta_{l i_{n}} \quad(\text { by }(20)) \\
& =\sum_{\sigma \in S_{1} \times S_{n-2}}\left(Y_{i_{\sigma(1)} \cdots i_{\sigma(n-1)}}\right)^{\dagger} c_{i_{\sigma(1)} \cdots i_{\sigma(n-1)}, i_{1} \cdots i_{n-1}} \delta_{l i_{n}} \quad \text { (by (39)). }
\end{aligned}
$$

The ${ }_{l} \partial$ applied to the right-hand side of (39) gives

$$
\sum_{\pi \in S_{1} \times S_{n-1}} l \partial\left(Y_{\mathbf{i} \cdot \pi}\right)^{\dagger} c_{\mathbf{i} \cdot \pi, \mathbf{i}}=\sum_{\pi \in S_{1} \times S_{n-1}} \sum_{(n \geqslant j \geqslant 2 ; l=\pi(j))} d_{\mathbf{i} \cdot \pi}^{(j)}\left(Y_{i_{\pi(1)} \cdots i_{\pi(j)} \cdots i_{\pi(n)}}\right)^{\dagger} c_{\mathbf{i} \cdot \pi, \mathbf{i}} \quad \text { (by (37)). }
$$

By linear independence of $Y_{\mathbf{i}}$ (cf corollary 1) we obtain the following system of $(n-1)$! equations (in the generic case) for ($n-1$)! unknown coefficients $c_{\mathbf{i} \cdot \pi, \mathbf{i}}\left(i_{1}=k, \pi \in S_{1} \times S_{n-1}\right)$:

Equations for $c_{\mathbf{j}, \mathbf{i}}$

$$
\begin{equation*}
\sum_{n \geqslant j \geqslant 2} d_{\mathbf{i} \cdot \pi t_{j, n}^{(j)}}^{(j)} c_{\mathbf{i} \cdot \pi t_{j, n}, \mathbf{i}}=\delta_{\pi(n), n} c_{(\mathbf{i} \cdot \pi)^{\prime}, \mathbf{i}^{\prime}} \tag{40}
\end{equation*}
$$

where $\pi \in S_{1} \times S_{n-1}, t_{j, n}$ denotes the cyclic permutation which sends $1,2, \ldots, j, j+1, \ldots, n$ to $1,2, \ldots, n, j, \ldots, n-1$ and $\mathbf{i}^{\prime}=i_{1} \ldots i_{n-1}$.

Note that our derivation of the equations (40) (generic case) will yield (by summation) the equations for the nongeneric case (i.e. when there are repetitions among i_{1}, \cdots, i_{n}). This justifies the form of our expression (15) for the number operators N_{k}.

The second approach to solving the recursive system (20) for $X_{\mathbf{i}}$ is to write $Y_{\mathbf{i}}$ in terms of $X_{\mathbf{i}}$, again with the first index fixed $\left(=k\right.$ for $\left.N_{k}\right)$.

$$
\begin{equation*}
\left(Y_{\mathbf{i}}\right)^{\dagger}=\sum_{\mathbf{j}=\mathbf{i} \cdot \pi, \pi \in S_{1} \times S_{n-1}}\left(X_{\mathbf{j}}\right)^{\dagger} e_{\mathbf{j}, \mathbf{i}} . \tag{41}
\end{equation*}
$$

Proposition 3. The coefficients $e_{\mathbf{j}, \mathbf{i}}$ satisfy the following recursions:

$$
\begin{equation*}
e_{\mathbf{i} \cdot \pi, \mathbf{i}}=d_{\mathbf{i}}^{(r)} e_{\mathbf{i}^{\prime} \cdot \pi^{\prime}, \mathbf{i}^{\prime}} \tag{42}
\end{equation*}
$$

where $r=\pi(n), \mathbf{i}^{\prime}=i_{1} \ldots i_{n-1}, \pi^{\prime}=t_{r, n} \pi\left(\Rightarrow \pi=t_{r, n}^{-1} \pi^{\prime}, \pi^{\prime} \in S_{n-1}\right)$, and $d_{\mathbf{i}}^{(r)}=d_{i_{1} \cdots i_{n}}^{(r)}$ is defined in (38).

Proof. By applying ${ }_{l} \partial$ to both sides of (41), and using (37), we obtain

$$
\begin{align*}
\sum_{\mathbf{j}=\mathbf{i} \cdot \pi, \pi \in S_{1} \times S_{n-1}}\left(X_{j_{1} \ldots j_{n-1}}\right)^{\dagger} e_{\mathbf{j}, \mathbf{i}} \delta_{l, j_{n}} & =\sum_{r \geqslant 2, i_{r}=l} d_{\mathbf{i}}^{(r)}\left(Y_{i_{1} \ldots, \hat{r}_{r} \ldots i_{n}}\right)^{\dagger} \tag{43}\\
& =\sum_{r \geqslant 2, i_{r}=l} d_{\mathbf{i}}^{(r)} \sum_{\sigma \in S_{1} \times S_{n-2}}\left(X_{\mathbf{i}_{r} \cdot \sigma}\right)^{\dagger} e_{\mathbf{i}_{\cdot} \cdot \sigma, \mathbf{i}_{r}} \tag{44}
\end{align*}
$$

where $\mathbf{i}_{\hat{r}}:=i_{1} \ldots i_{r-1} i_{r+1} \ldots i_{n}$. Observe that $i_{\pi(1)} \ldots i_{\pi(n-1)}=\mathbf{i}_{\hat{r}} \cdot \sigma$ iff $r=\pi(n)$ and $\sigma=t_{r, n} \pi$. By equating the coefficients in (43) and (44) the proof of proposition 3 follows.

Note that the recursion (42) corresponds to the multiplication by the following element (of the twisted group algebra):

$$
\begin{equation*}
\eta_{n}:=\sum_{k=2}^{n} Q_{\{k, k+1\}} \cdots Q_{\{k, n\}}\left(1-Q_{\{k, 1\}} \cdots Q_{\{k, k-1\}}\right) \tilde{t}_{k, n}^{-1} \tag{42a}
\end{equation*}
$$

Let $E=\left(e_{\mathrm{i}, \mathbf{j}}\right)$, with $i_{1}=j_{1}(=k)$ fixed, be the $(n-1)!\times(n-1)!$ transition matrix (in the generic case), with entries $e_{i, j}$ from (41). In [8], the linear equations for the entries of E^{-1} are constructed for general n and solved in special cases for $n=1,2,3$. From these computations it was conjectured (in [8]) that E^{-1} is related to the inverse of the Gram matrix A, see equation (3); here we prove this conjecture.

By comparing ξ_{n} from (36) with η_{n} from (42a) we get

$$
w_{n} \eta_{n} w_{n}=\xi_{n}
$$

and deduce the following:
Lemma 2. The matrix E is the matrix of the right multiplication by the following element of our twisted group algebra $K_{n}{ }^{\sim}\left[S_{n}\right]$:

$$
\begin{equation*}
w_{n} \widetilde{\alpha}_{n-1,1} \widetilde{\delta}_{n} w_{n} \tag{45}
\end{equation*}
$$

Here $w_{n}=n \ldots 21$ denotes the longest element in S_{n}.
Proof. It follows by iteratively applying the result of lemma 1, using the definition (32) of $\tilde{\delta}_{n}$ together with the recursions obtained in proposition 3.

5. The main results

Now we prove the following theorem:
Theorem 1. The number operators in the multiparameter quon algebra $\mathcal{A}^{(\mathbf{q})}$ equation (1) are given, in the expanded form, by

$$
\begin{equation*}
N_{k}=a_{k}^{\dagger} a_{k}+\sum_{n=1}^{\infty} \sum_{\mathbf{i}, i_{1}=k} \sum_{\pi \in S_{1} \times S_{n-1}} \hat{A}_{\mathbf{i}, \mathbf{i} \cdot \pi}^{-1}\left(Y_{\mathbf{i} \cdot \pi}\right)^{\dagger} Y_{\mathbf{i}} \tag{46}
\end{equation*}
$$

where the matrix \hat{A} denotes the matrix obtained from the Gram matrix $A=\oplus_{n \geqslant 0} \oplus_{k_{1} \leqslant \cdots \leqslant k_{n}}$ $A^{k_{1} \ldots k_{n}}$ (described in (4)) by replacing each block $A^{k_{1} \ldots k_{n}}\left(k_{1} \leqslant \cdots \leqslant k_{n}\right)$ with a specialized $n!\times n!$ block $\left.A^{12 \cdots n}\right|_{1 \mapsto k_{1}, 2 \mapsto k_{2} \cdots n \mapsto k_{n}}$ and $Y_{\mathbf{i}}$ are given by (22).

Or, in the reduced form, by

$$
\begin{equation*}
N_{k}=a_{k}^{\dagger} a_{k}+\sum_{n=1}^{\infty} \sum_{\mathbf{i}, i_{1}=k} \sum_{\tilde{\pi} \in \operatorname{Sta} b_{\mathbf{i}} \backslash S_{1} \times S_{n-1}} \tilde{A}_{\mathbf{i} \mathbf{i} \mathbf{i} \cdot \tilde{\pi}}^{-1}\left(Y_{\mathbf{i} \cdot \tilde{\pi}}\right)^{\dagger} Y_{\mathbf{i}} \tag{47}
\end{equation*}
$$

where the reduction procedure is given with respect to the groups $S_{1} \times S_{n-1}$ (instead of S_{n}) analogously to the reduction procedure described in the text preceding (6).

The proof of this theorem relies on one more lemma.
Lemma 3. We have
The $S_{1, n-2,1}$-component of $\tilde{\alpha}_{n}^{-1}=$ the $S_{1, n-2,1}$-component of $\widetilde{\delta}_{n}^{-1} \times \widetilde{\alpha}_{n-1,1}^{-1}$.

Proof of lemma 3. This is a generalization of a Zagier result [15]. Here we sketch the proof. By observing that $\widetilde{\alpha}_{n-1}=\widetilde{\alpha}_{n-1,1}$ we can write (cf (33))

$$
\begin{equation*}
\widetilde{\alpha}_{n}=\widetilde{\alpha}_{n-1,1} \widetilde{\delta}_{n} \widetilde{\gamma}_{n}^{-1} \quad \widetilde{\alpha}_{n}^{-1}=\widetilde{\gamma}_{n} \tilde{\delta}_{n}^{-1} \widetilde{\alpha}_{n-1,1}^{-1} \tag{48}
\end{equation*}
$$

where, according to (31),

$$
\begin{equation*}
\tilde{\gamma}_{n}=\left(1-\widetilde{t}_{1, n}\right)\left(1-\widetilde{t}_{2, n}\right) \cdots\left(1-\tilde{t}_{n-1, n}\right)=\sum_{k=1}^{n}(-1)^{n-k} \sum_{\pi \in S_{n, k}} \tilde{\pi}^{-1} \tag{49}
\end{equation*}
$$

with $S_{n, k} \subset S_{n}$ denoting the set of all permutations such that $\pi(1)<\cdots<\pi(k)=n>$ $\cdots>\pi(n)$. Note that $\tilde{\delta}_{n}$ involves only permutations belonging to $S_{n-1} \times S_{1}$ (cf (32); for an explicit formula for the inverse of $\widetilde{\delta}_{n}$ see proposition 2.1.1 in [10]). Now it is clear that only the trivial term in $\tilde{\gamma}_{n}$ can contribute to the $S_{1, n-2,1}$-component of $\tilde{\alpha}_{n}^{-1}$. Lemma 3 is proved. This establishes the connection between E^{-1} and the inverse A^{-1} of the Gram matrices.

Proof of theorem 1. By using lemmas 2 and 3, together with the symmetry property (9) and Hermiticity (8) of the multiparameter Zagier matrices, we obtain

$$
X_{\mathbf{i}}^{\dagger}=\sum_{\pi \in S_{1} \times S_{n-1}} Y_{\mathbf{i} \cdot \pi}^{\dagger} A_{\mathbf{i}, \mathbf{i} \cdot \pi}^{-1}
$$

in expanded form, and similarly

$$
X_{\mathbf{i}}^{\dagger}=\sum_{\tilde{\pi} \in H \backslash S_{1} \times S_{n-1}} Y_{\mathbf{i} \cdot \tilde{\pi}}^{\dagger} A_{\mathbf{i}, \mathbf{i} \cdot \tilde{\pi}}^{-1}
$$

in reduced form. This completes the proof of theorem 1. The method for calculating the inverse of the matrix A is explained in [9 , theorem 2.2.17].

Corollary. Let us assume an infinite set I of indices, then the number operator N_{k} restricted to the finite subset $I_{f} \subseteq I$ is obtained from equations (46) and (47) by projecting out all words with letters from the subset I_{f}. In particular if $I_{f}=\{k\}$ we recover the simple formula for N_{k} for a single oscillator obtained by Greenberg [2-3].

Also, if we plug into (46) and (47) the formulae (22) expressing Y_{i} in terms of monomials, we obtain Zagier or Stanciu type formulae for the number operator.

The transition operators will be considered in the near future.

Acknowledgments

This work was supported by the Ministry of Science and Technology of the Republic of Croatia under contracts 0098003 and 037009.

References

[1] Bardek V, Meljanac S and Perica A 1994 Generalized statistics and dynamics in curved spacetime Phys. Lett. B 338 20-2
[2] Greenberg O W 1990 Example of infinite statistics Phys. Rev. Lett. 64 705-8
[3] Greenberg O W 1991 Particles with small violations of Fermi or Bose statistics Phys. Rev. D 43 4111-20
[4] Greenberg O W 1992 Interactions of particles having small violations of statistics Physica A 180 419-27
[5] Mohapatra R N 1990 Infinite statistics and a possible small violation of the Pauli principle Phys. Lett. B 242 407-10
[6] Møller J S 1993 Second quantization in a quon algebra J. Phys. A: Math. Gen. 26 562-652
[7] Meljanac S and Perica A 1994 Generalized quon statistics Mod. Phys. Lett. A 9 3293-9
[8] Meljanac S and Perica A 1994 Number operators in a general quon algebra J. Phys. A: Math. Gen. 27 4737-44
[9] Meljanac S and Svrtan D 1996 Study of Gram matrices in Fock representation of multiparametric canonical commutation relations, extended Zagier's conjecture, hyperplane arrangements and quantum groups Math. Commun. 11-24 (math-ph/0304039)
[10] Meljanac S and Svrtan D 1995 Determinants and inversion of Gram matrices in Fock representation of $\left\{q_{k l}\right\}$ canonical commutation relations and applications to hyperplane arrangements and quantum groups. Proof of an extension of Zagier's conjecture Preprint RBI-TH-5/Nov.1995, math-ph/0304040
[11] Stanciu S 1992 The energy operator for infinite statistics Commun. Math. Phys. 147 211-6
[12] Varchenko A 1993 Bilinear form of real configuration of hyperplanes Adv. Math. 97 110-44
[13] Werner R F 1993 The free quon gas suffer Gibbs' paradox Phys. Rev. D 48 2929-34
[14] Wu Z and Yu T 1993 Construction of Bose and Fermi operators in terms of $q=0$ quon operators Phys. Lett. A 179 266-70
[15] Zagier D 1992 Realizability of a model in infinite statistics Commun. Math. Phys. 147 199-210
[16] Božejko M and Speicher R 1994 Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces Math. Ann. 300 97-120
[17] Jørgensen P E T, Schmitt L M and Werner R F 1995 Positive representations of general commutation relations allowing Wick ordering J. Funct. Anal. 134 33-99

